Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo.

Identifieur interne : 001A42 ( Main/Exploration ); précédent : 001A41; suivant : 001A43

Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo.

Auteurs : J. Wu [États-Unis] ; T. Tolstykh ; J. Lee ; K. Boyd ; J B Stock ; J R Broach

Source :

RBID : pubmed:11060018

Descripteurs français

English descriptors

Abstract

The phosphoprotein phosphatase 2A (PP2A) catalytic subunit contains a methyl ester on its C-terminus, which in mammalian cells is added by a specific carboxyl methyltransferase and removed by a specific carboxyl methylesterase. We have identified genes in yeast that show significant homology to human carboxyl methyltransferase and methylesterase. Extracts of wild-type yeast cells contain carboxyl methyltransferase activity, while extracts of strains deleted for one of the methyltransferase genes, PPM1, lack all activity. Mutation of PPM1 partially disrupts the PP2A holoenzyme in vivo and ppm1 mutations exhibit synthetic lethality with mutations in genes encoding the B or B' regulatory subunit. Inactivation of PPM1 or overexpression of PPE1, the yeast gene homologous to bovine methylesterase, yields phenotypes similar to those observed after inactivation of either regulatory subunit. These phenotypes can be reversed by overexpression of the B regulatory subunit. These results demonstrate that Ppm1 is the sole PP2A methyltransferase in yeast and that its activity is required for the integrity of the PP2A holoenzyme.

DOI: 10.1093/emboj/19.21.5672
PubMed: 11060018
PubMed Central: PMC305778


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo.</title>
<author>
<name sortKey="Wu, J" sort="Wu, J" uniqKey="Wu J" first="J" last="Wu">J. Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, NJ 08544</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tolstykh, T" sort="Tolstykh, T" uniqKey="Tolstykh T" first="T" last="Tolstykh">T. Tolstykh</name>
</author>
<author>
<name sortKey="Lee, J" sort="Lee, J" uniqKey="Lee J" first="J" last="Lee">J. Lee</name>
</author>
<author>
<name sortKey="Boyd, K" sort="Boyd, K" uniqKey="Boyd K" first="K" last="Boyd">K. Boyd</name>
</author>
<author>
<name sortKey="Stock, J B" sort="Stock, J B" uniqKey="Stock J" first="J B" last="Stock">J B Stock</name>
</author>
<author>
<name sortKey="Broach, J R" sort="Broach, J R" uniqKey="Broach J" first="J R" last="Broach">J R Broach</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11060018</idno>
<idno type="pmid">11060018</idno>
<idno type="doi">10.1093/emboj/19.21.5672</idno>
<idno type="pmc">PMC305778</idno>
<idno type="wicri:Area/Main/Corpus">001A31</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A31</idno>
<idno type="wicri:Area/Main/Curation">001A31</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A31</idno>
<idno type="wicri:Area/Main/Exploration">001A31</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo.</title>
<author>
<name sortKey="Wu, J" sort="Wu, J" uniqKey="Wu J" first="J" last="Wu">J. Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, NJ 08544</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tolstykh, T" sort="Tolstykh, T" uniqKey="Tolstykh T" first="T" last="Tolstykh">T. Tolstykh</name>
</author>
<author>
<name sortKey="Lee, J" sort="Lee, J" uniqKey="Lee J" first="J" last="Lee">J. Lee</name>
</author>
<author>
<name sortKey="Boyd, K" sort="Boyd, K" uniqKey="Boyd K" first="K" last="Boyd">K. Boyd</name>
</author>
<author>
<name sortKey="Stock, J B" sort="Stock, J B" uniqKey="Stock J" first="J B" last="Stock">J B Stock</name>
</author>
<author>
<name sortKey="Broach, J R" sort="Broach, J R" uniqKey="Broach J" first="J R" last="Broach">J R Broach</name>
</author>
</analytic>
<series>
<title level="j">The EMBO journal</title>
<idno type="ISSN">0261-4189</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Cattle (MeSH)</term>
<term>Cell Cycle Proteins (chemistry)</term>
<term>Cell Cycle Proteins (genetics)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>DNA, Complementary (genetics)</term>
<term>DNA, Complementary (isolation & purification)</term>
<term>Drug Resistance, Microbial (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Methylation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phosphoprotein Phosphatases (chemistry)</term>
<term>Phosphoprotein Phosphatases (genetics)</term>
<term>Phosphoprotein Phosphatases (metabolism)</term>
<term>Protein Methyltransferases (chemistry)</term>
<term>Protein Methyltransferases (genetics)</term>
<term>Protein Methyltransferases (metabolism)</term>
<term>Protein Phosphatase 2 (MeSH)</term>
<term>Protein Subunits (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Schizosaccharomyces pombe Proteins (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>ADN complémentaire (isolement et purification)</term>
<term>Animaux (MeSH)</term>
<term>Bovins (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Méthylation (MeSH)</term>
<term>Phosphoprotein Phosphatases (composition chimique)</term>
<term>Phosphoprotein Phosphatases (génétique)</term>
<term>Phosphoprotein Phosphatases (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Protein Methyltransferases (composition chimique)</term>
<term>Protein Methyltransferases (génétique)</term>
<term>Protein Methyltransferases (métabolisme)</term>
<term>Protein Phosphatase 2 (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines de Schizosaccharomyces pombe (MeSH)</term>
<term>Protéines du cycle cellulaire (composition chimique)</term>
<term>Protéines du cycle cellulaire (génétique)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Résistance microbienne aux médicaments (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sous-unités de protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Fungal Proteins</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protein Methyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>DNA, Complementary</term>
<term>Fungal Proteins</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protein Methyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Fungal Proteins</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protein Methyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Phosphoprotein Phosphatases</term>
<term>Protein Methyltransferases</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protein Methyltransferases</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>ADN complémentaire</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphoprotein Phosphatases</term>
<term>Protein Methyltransferases</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cattle</term>
<term>Drug Resistance, Microbial</term>
<term>Gene Expression</term>
<term>Genes, Fungal</term>
<term>Humans</term>
<term>Methylation</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Protein Phosphatase 2</term>
<term>Protein Subunits</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Bovins</term>
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Gènes fongiques</term>
<term>Humains</term>
<term>Mutation</term>
<term>Méthylation</term>
<term>Phénotype</term>
<term>Protein Phosphatase 2</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Résistance microbienne aux médicaments</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sous-unités de protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The phosphoprotein phosphatase 2A (PP2A) catalytic subunit contains a methyl ester on its C-terminus, which in mammalian cells is added by a specific carboxyl methyltransferase and removed by a specific carboxyl methylesterase. We have identified genes in yeast that show significant homology to human carboxyl methyltransferase and methylesterase. Extracts of wild-type yeast cells contain carboxyl methyltransferase activity, while extracts of strains deleted for one of the methyltransferase genes, PPM1, lack all activity. Mutation of PPM1 partially disrupts the PP2A holoenzyme in vivo and ppm1 mutations exhibit synthetic lethality with mutations in genes encoding the B or B' regulatory subunit. Inactivation of PPM1 or overexpression of PPE1, the yeast gene homologous to bovine methylesterase, yields phenotypes similar to those observed after inactivation of either regulatory subunit. These phenotypes can be reversed by overexpression of the B regulatory subunit. These results demonstrate that Ppm1 is the sole PP2A methyltransferase in yeast and that its activity is required for the integrity of the PP2A holoenzyme.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11060018</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>11</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0261-4189</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2000</Year>
<Month>Nov</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The EMBO journal</Title>
<ISOAbbreviation>EMBO J</ISOAbbreviation>
</Journal>
<ArticleTitle>Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo.</ArticleTitle>
<Pagination>
<MedlinePgn>5672-81</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The phosphoprotein phosphatase 2A (PP2A) catalytic subunit contains a methyl ester on its C-terminus, which in mammalian cells is added by a specific carboxyl methyltransferase and removed by a specific carboxyl methylesterase. We have identified genes in yeast that show significant homology to human carboxyl methyltransferase and methylesterase. Extracts of wild-type yeast cells contain carboxyl methyltransferase activity, while extracts of strains deleted for one of the methyltransferase genes, PPM1, lack all activity. Mutation of PPM1 partially disrupts the PP2A holoenzyme in vivo and ppm1 mutations exhibit synthetic lethality with mutations in genes encoding the B or B' regulatory subunit. Inactivation of PPM1 or overexpression of PPE1, the yeast gene homologous to bovine methylesterase, yields phenotypes similar to those observed after inactivation of either regulatory subunit. These phenotypes can be reversed by overexpression of the B regulatory subunit. These results demonstrate that Ppm1 is the sole PP2A methyltransferase in yeast and that its activity is required for the integrity of the PP2A holoenzyme.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tolstykh</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boyd</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stock</LastName>
<ForeName>J B</ForeName>
<Initials>JB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Broach</LastName>
<ForeName>J R</ForeName>
<Initials>JR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 CA041086</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007388</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA41086</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM07388</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO J</MedlineTA>
<NlmUniqueID>8208664</NlmUniqueID>
<ISSNLinking>0261-4189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071246">CDC55 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D011496">Protein Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.100</RegistryNumber>
<NameOfSubstance UI="C056501">protein-S-isoprenylcysteine O-methyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.-</RegistryNumber>
<NameOfSubstance UI="C106081">ppe1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D010749">Phosphoprotein Phosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D054648">Protein Phosphatase 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004352" MajorTopicYN="N">Drug Resistance, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008745" MajorTopicYN="N">Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010749" MajorTopicYN="N">Phosphoprotein Phosphatases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011496" MajorTopicYN="N">Protein Methyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054648" MajorTopicYN="N">Protein Phosphatase 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="Y">Schizosaccharomyces pombe Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11060018</ArticleId>
<ArticleId IdType="doi">10.1093/emboj/19.21.5672</ArticleId>
<ArticleId IdType="pmc">PMC305778</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1995 Oct 1;311 ( Pt 1):17-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7575450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 20;274(34):24038-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Feb 2;271(5):2578-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8576224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Jul 1;317 ( Pt 1):187-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8694763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Dec 14;38(50):16539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2000 Apr;12(2):180-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Nov 1;19(21):5682-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1984;106:310-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6387375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2500-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7681598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1993 May;18(5):172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8392229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1996 Dec 1;6(12):1609-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Feb;17(2):620-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9001215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Feb;145(2):227-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9071579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Jun;17(6):3242-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9154823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Jun 29;247(3):827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1998 Sep 21;142(6):1399-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9744873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Sep 15;268(26):19192-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8396127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Feb;14(2):1438-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8289819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jan 21;269(3):1981-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Mar 18;269(11):7957-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7510677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Aug 5;269(31):20139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8051102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Aug 16;33(32):9806-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8068661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Nov 5;24(23):6651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4084550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1989;58:453-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2549856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Dec;9(13):4339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2176150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Jul;10(7):1699-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2050108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 9;66(3):507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1651171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Aug 9;66(3):519-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1651172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Oct;11(10):4876-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1656215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Nov;11(11):5767-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1656238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1992 Jan 2;110(1):119-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1544568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Aug 28;257(5074):1261-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1325671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Nov;12(11):4946-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1328868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Biol. 1994 Dec;5(6):367-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7711285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 May 26;158(1):113-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7789793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jun 15;14(12):2745-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7796803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Jan 8;96(1):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9989501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 14;274(20):14382-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Aug 10;38(32):10371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10441131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 3;270(44):26123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592815</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Boyd, K" sort="Boyd, K" uniqKey="Boyd K" first="K" last="Boyd">K. Boyd</name>
<name sortKey="Broach, J R" sort="Broach, J R" uniqKey="Broach J" first="J R" last="Broach">J R Broach</name>
<name sortKey="Lee, J" sort="Lee, J" uniqKey="Lee J" first="J" last="Lee">J. Lee</name>
<name sortKey="Stock, J B" sort="Stock, J B" uniqKey="Stock J" first="J B" last="Stock">J B Stock</name>
<name sortKey="Tolstykh, T" sort="Tolstykh, T" uniqKey="Tolstykh T" first="T" last="Tolstykh">T. Tolstykh</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Wu, J" sort="Wu, J" uniqKey="Wu J" first="J" last="Wu">J. Wu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11060018
   |texte=   Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11060018" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020